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EXECUTIVE SUMMARY: 
 
The major accomplishments of this research program were as follows: 
 

1. We fabricated and tested the first inverse opal infrared “white” pigment. 
2. We made the first electrochromic cell that operated in the important 8µm-12µm 

atmospheric transmission window. 
3. We made the first all-polymer electrochromic cell, that contained no metallic components. 
4. We achieved 80% contrast, electrically tuned, in an infrared electrochromic cell. 
5. We demonstrated electrochromic switching in 67 milli-seconds, essentially a video rate. 

 
 



INTRODUCTION: 
 The goal of this research program was to create a technology for artificially 
programmable infrared emissivity of surfaces.  As an example, this would permit a vehicle, or a 
person to blend into its surroundings, and become invisible to an infrared camera.  A great deal 
has been accomplished in this research program, that will help convert this technology into a 
practical reality. 
 The main technical objective is the controlled reduction of infrared emissivity.  An 
emissivity reduction not an increase is desired, since objects of interest are generally hotter than 
their surroundings.  The tunability of emissivity is made possible by electrochromics.  Today, 
electrochromics is becoming a common technology that is used, for example, in self-dimming 
rear view mirrors in automobiles.  Electrochromic materials change their color by undergoing an 
electronic transition of some form.  In the most common type the electronic transformation is 
induced electro-chemically in special polymeric materials.  In effect this is a type of 
electrochemical doping, with the material thereby undergoing a transition from an insulator to a 
metal, with the corresponding changes in color.  
 There are two possible approaches to emissivity control:     
(a)  It is possible to imagine that the electronic transition is to a metallic state, that might have 
high reflectivity. 

  

(b)  The insulating state would be transparent, and it could be backed up by a highly reflective 
medium.   

  
  

 It turns out that the first option, (a) using the electrochemically doped metallic state as a 
reflector is not practical.  The electro-chemically doped metals are actually not very good 
reflectors in the infrared.  The materials are still somewhat resistive, compared to conventional 
metals, and therefore they are actually good absorbers in the infrared, rather than good reflectors.  
This is illustrated in 
Figure 1.  The visible band 
and infrared band have 
surprisingly opposite 
behaviour.  Therefore we 
employed option (b) 
above.   

  
  
  
  
  

  

 The requirements 
then were a polymeric 
material that was 
relatively transparent in 
the undoped state, and an 
infrared pigment that was 
“white” in the infrared.  
Such an infrared pigment 
would represent new 
technology, made for 
example by inverse opal 
photonic crystal particles 
in which short range order 
would suffice.  Such an 
infrared pigment would 
coat the rear side of the 

 
Figure 1:  The absorbance of PEDOT in the visible and the infrared.  
Notice the counter-intuitive effects of doping.  Doping eliminates 
the strong absorption in the visible, but the added carriers increase 
the absorption in the infrared. 



 
Figure 2:  The basic strategy for controlling infrared emissivity by means of an electrochromic 
cell. 

electrochromic polymer, as shown in Figure 2.  Such an infrared pigment could be regarded as a 
superior form of “white” pigment compared to titanium dioxide particles that are commonly used 
as white pigments in the visible range. 

 

 Thus the work divided itself into two parts:   
(1) The construction of the infrared electro-chemical cell with the highest infrared contrast 
possible. 
(2) The fabrication of this new type of infrared pigment based on a powder made of inverse opal 
photonic crystals.  It made sense to build the inverse opal photonic crystals out of chalcogenide 
glasses, that had the required infrared transparency, and the desirable high refractive index. 
 Most of the team’s effort (Reynolds, Tanner, Wudl, and Dunn) was directed toward the 
difficult task of building the infrared electrochemical cell, with the Principal Investigator directly 
supervising the infrared opal work that was taking place in the laboratory of Ray Baughmann.  
Initially that work was in the industrial AlliedSignal lab that had considerable experience with 
pigments as part of their textile business.  During this MURI program, there were a number of 
mergers, and corporate changes, and the Baughmann/Zakhidov team moved their research lab to 
the Univ. of Texas, Dallas.  With minor disruptions they continued their progress toward infrared 
chalcogenide photonic crystal reflectors until the completion of this MURI program.  
 
FABRICATION OF THE INFRARED ELECTRCHROMIC ELECTROCHEMICAL CELL: 
 
 Responsibility for the creation of the infrared electrochemical cell fell to Reynolds and to 
Dunn, who had parallel approaches.  Wudl concentrated on the synthesis of novel narrow 
bandgap electrochromic polymers, that would have more specialized applications, like the fine 
tuning of the infrared response over a particular narrow portion of the infrared..   



Figure 3:  A very successful infrared electrochromic cell fabricated by our Florida group.  In this 
case, the reflective pigment behind the Redox polymer is actually a slitted reflective gold film, 
rather than the inverse opal chalcogenide photonic crystal that is one of the goals of the program.  
All the layers below the slitted gold film are simply for the purpose of providing a practical 
counter-electrode for the active Redox polymer. 
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 The preferred dopable polymer for these infrared electrochromic was generally 
PEDOT-Me2 whose structure is illustrated in the inset to Figure 3.  Nevertheless, a wide variety 
of candidate polymers were investigated.   

 

 The infrared performance allows for over 80% emissivity contrast as shown in Figure 4.  
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Figure 4:  Tuning the infrared emissivity, electrochemically.  80% contrast is achieved. 
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Figure 5:  This electrochemical design permitted emissivity modulation in the 8µm-12µm 
atmospheric window. 

Such a high contrast level bodes well for the practical application of this technology in the field.  
Nonetheless, a cursory examination of Figure 4, shows strong absorption peaks at the water band, 
and in the CH stretching band, where there is weak modulation contrast.  The water peak can be 
removed by careful drying of the polymer, and the CH stretch can be diminished to about a 20% 
peak, that still permits considerable modulation.  The contrast seems to peak for an 
electrochromic polymer film thickness, <400nm.   
 In tests, after 10,000 deep double switches the polymer was still electrochemically very 
active, with only a 12% loss in reflectance difference.  By substituting a commercially available 
PMMA porous white membrane, (that is supposed to emulate our inverse opal infrared pigment), 
in place of the slitted gold film reflector, the path that the ions had to follow was greatly 
shortened.  This allowed the resistive drop to diminish and permitted faster switching times, 
<1sec.  Starting from 74% contrast, after 168,000 cycles the contrast had only dropped to 66%, at 
an infrared wavelength of λ=1.5µm.   
 Furthermore Dunn has also studied mesoporous electrode configurations that allow for 
even faster reduction and oxidation of the electrochromic polymer.  Switching times as fast as 
67milli-sec was observed, which is close to video rates. 
There were also experiments in which the counter electrode was also an electrochromic polymer.  
This allowed for novel architectures in which various double sided effects could be demonstrated.  
These “metal-free” electrochromic cells are expected to be useful, where metal electrodes could 
cause difficulties.   
 The 
electrochromic cell 
experiments were 
extended well into 
the 8µm-12µm 
atmospheric window.  
The cell geometry is 
shown in Figure 5.  
The new features 
included a proper 
Germanium window, 
anti-reflection 
coated.  Excellent 
reflection contrast is 
noted in Figure 6, 

Wavelength (µm)

%R

+1.0V (doped)

-1.0V (undoped)

0 V 

• AR coating on both sides of 
Ge and gel electrolyte with 
carbon black was applied to 
increase reflection contrast of 
IR device
• IR reflection varies between 
20~30% and 60~70% for 
undoped and doped states

  
Figure 6.  Significant reflection modulation in the 8µm-12µm 
atmospheric window.  Contrary to previous cases, the performance 
improved with carbon black impregnated absorbing gel electrolyte, rather 
than the “white” pigment electrolyte. 



although using a black reflector, rather than a white reflector.  Owing to the relatively permeable 
PMMA-based gel electrolyte, switching times <100milli-sec were observed again. 
 The results presented above represent a number of firsts, that we are proud of, including: 

1. We made the first electrochromic cell that operated in the important 8µm-12µm 
atmospheric transmission window. 

2. We made the first all-polymer electrochromic cell, that contained no metallic components. 
3. We achieved 80% contrast, electrically tuned, in an infrared electrochromic cell. 
4. We demonstrated electrochromic switching in 67 milli-seconds, essentially a video rate. 

This level of electrochromic cell performance should be very suggestive to government decision 
makers who are interested in the potential of electrochromics for emissivity control.  None of the 
electrochromic cells listed above took advantage of the inverse opal infrared pigment structures, 
that were being developed at the University of Texas.  Those novel pigments are expected to 
produce even higher levels of performance. 
 
SYNTHESIS OF LOW BANDGAP INFRARED ELECTROCHROMIC POLYMERS: 
 
 Prof. Fred Wudl took the lead in this project.  Such low bandgap infrared polymers could 
be very useful in fine-tuning infrared response, within an electrochemical cell that is oriented 
toward overall reduced emissivity.  Wudl 
was able to produce polymers with a 
bandgap as small as 0.2electron-Volts.  
His strategy was to combine a molecular 
group with a low energy Lowest 
Unoccupied Molecular Orbital, (LUMO) 
with another group with a relatively high, 
Highest Occupied Molecular Orbital, 
(HOMO).  This squeezed the electron 
transition energy splitting to make it low 
enough to be useful in the infrared. 
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Figure 7:  These unusually large groups attached to 
a polymeric backbone, results in very low infrared 
bandgap electrochromic polymers. 

 An example of such a low bandgap 
polymer is shown in Figure 7. 
 
 
FABRICATION OF INFRARED WHITE PIGMENT: 
 
 In general the infrared electrochromic cells should perform best with a white pigment 
backing.  When the polymer is undoped, it transmits radiation that is reflected by the white 
backing, resulting in a low emissivity.  Conversely, when doped, the polymer is quite absorbing 
in the infrared, (though not in the visible).  Usually the polymer is thin enough, <400nm, that the 
infrared vibrational bands in the polymer itself have small effect, but that thickness is more than 
enough to hold a sufficient density of doped electrons per square centimeter to be strongly 
absorbing.  Thus the goal of tunable low emissivity relies on having a low emissivity backing on 
the undoped polymer.  The work described below was done by Dr. Ali Aliev working at the Univ. 
of Texas, Dallas. 
 We have chosen to work with the chalcogenide glasses that have bandgaps compatible 
with infrared transmission, are easy to fabricate, and have among the high refractive indices 
known.  The  high refractive index insures strong scattering which produces the lowest possible 



emissivity.  Indeed, in the visible region of the spectrum TiO2 is used as a white pigment for the 
same reason.  It has the highest know refractive index in the visible.  In the same way 
chalcogenides have even higher refractive index, but in the infrared. 

Figure 8:  SEM image of a sintered opal template fabricated from silica microspheres of 3.9µm. 
(a) Low-magnification image showing long-range ordering. Several ordered layers can be seen 
on the fractured edge to the bottom right. (b) High-magnification image showing a slight 
decrease in the lattice parameter after sintering at 900oC for 24 hours.  The average distance 
between spheres reduced from 3.9µm to 3.65µm. 

      
(a)      (b) 

 There have been numerous studies of inverse opal photonic crystals.  Their photonic 
bandgap is not very wide, but the structure scatters strongly over a broad range of frequencies.  
The starting point for these strongly scattering structures is a face centered cubic arrangement of 
polystyrene spheres as shown in Figure 8.  Similar SEM pictures have been shown by research 
groups around the world, but usually at a size scale about 5-10 times smaller, where they are 
suitable at visible frequencies.  We believe that we are the first with such large opal structures 
whose period is suitable for the infrared.  Special care was taken with the purification of these 
spheres to make certain that non-spherical impurities were removed. 
 
Table I:  Properties of some potential opal infiltration materials. 

Name Formula Refraction 
index  

Transmission 
range (µm) 

Melting point 
(oC) 

AMTIR-1* Ge33As12Se55 2.514 (4 µm) 
  2.497 (10 µm) 

0.9 - 16 370 

Arsenic 
selenide 

As2Se3 2,41 (4 µm)  2.0 - 12 260 

Arsenic  
sulfide 

As2S3 2,41 (5 µm) 1.5 - 8 310 

Gallium 
Arsenide 

GaAs  3,3  (4 µm) 1.0 - 15 1238 

 Ge25Ga5As5S65 2.58 0.6 - 7 850 
*  http://www.amorphousmaterials.com/Amtir-1.htm 
 The next important step was infiltration of this long period opal structure with 
chalcogenide glass.  Table I indicates the physical properties of some arsenic and selenium 



containing compounds.  We used the commercial blend called AMTIR-1.  Pressure assisted the 
infiltration process at 600°C.   

 

       
(a)       (b) 

Figure 9:  Left: SEM image of the cleaved edge of the chalcogenide glass-silica opal composite 
with ~100% infiltration. Right: image of the chalcogenide glass inverse opal with the silica glass 
dissolved away.  The channels between voids are easily seen.  The original particle diameter of 
the template was 2.3µm. After sintering the distance between particles reduced to 2µm 

 The final step in using these materials would be to break up the beautiful inverse opal 
structure of Figure 9(b) into a coarse powder that would have substantial infrared reflectivity.  
This powder would be the “white” infrared pigment that we refer to.  It would be entirely 
analogous to a coarse polycrystalline mass of TiO2 particles, that looks brilliant white in the 
visible regime.  We have measured reflectivity up to 60%-70%, but that has to be merely a lower 
limit since it was difficult to collect all the scattered optical radiation.  An integrating sphere 
measurement would have been most decisive as to the degree of infrared “whiteness” that would 
be observed. 
 The fabrication outlined above is ready to be adapted for the creation of a useful pigment 
that consists of a porous mass of inverse opal material.  For further conclusions on this project, 
please see the Executive Summary at the beginning.  
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